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Abstract—Two fundamental problems of distributed comput-
ing are Gathering and Arbitrary pattern formation (APF). These
two tasks are different in nature as in gathering robots meet at a
point but in APF robots form a fixed pattern in distinct positions.

In most of the current literature on swarm robot algorithms,
it is assumed that all robots in the system perform one single
task together. Two teams of oblivious robots deployed in the same
system and different teams of robots performing two different
works simultaneously where no robot knows the team of another
robot is a new concept in the literature introduced by Bhagat et
al. [ICDCN’2020].

In this work, a swarm of silent and oblivious robots are
deployed on an infinite grid under an asynchronous scheduler.
The robots do not have access to any global coordinates. Some
of the robots are given input of an arbitrary but unique pattern.
The set of robots with the given pattern is assigned the task
of forming the given pattern on the grid. The remaining robots
are assigned with the task of gathering to a vertex of the grid
(not fixed from earlier and not any point where a robot that is
forming a pattern terminates). Each robot knows to which team
it belongs, but can not recognize the team of another robot.
Considering weak multiplicity detection, a distributed algorithm
is presented in this paper which leads the robots with the input
pattern into forming it and other robots into gathering on a
vertex of the grid on which no other robot forming the pattern,
terminates.

Index Terms—Robots, Gathering, Arbitrary pattern formation,
Infinite grid

I. INTRODUCTION

In swarm robotics, robots solving some tasks with minimum
capabilities is the main focus of interest. In the last two
decades, there has been huge research interest in robots
working with coordination problems. It is not always easy
to use robots with strong capability in real-life applications,
as the making of these robots is not at all cost-effective. If a
swarm of robots with minimum capabilities can do the same
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task then it is effective to use swarm robots rather than using
robots with many capabilities, as the making of these robots in
the swarm is very much cheaper than making robots with many
capabilities. Also, it is very easy to design a robot of a swarm
due to the fact that they have minimum capabilities. Depending
on these capabilities there are generally four types of robot
models. These models are OBLOT , FST A, FCOM and
LUMI. In each of these models, robots are assumed to be
autonomous (i.e the robots do not have any central control),
identical (i.e the robots are physically indistinguishable), and
anonymous (i.e the robots do not have any unique identifiers).
Furthermore in the OBLOT model, the robots are silent (i.e
there is no means of communication between the robots) and
oblivious (i.e the robots do not have any persistent memory to
remember their previous state), in FST A model the robots
are silent but not oblivious, in FCOM model the robots
are oblivious but not silent and in LUMI model robots are
neither silent nor oblivious. The robots after getting activated
operate in a LOOK-COMPUTE-MOVE (LCM) cycle. In the
LOOK phase a robot takes input from its surroundings and
then with that input runs the algorithm in COMPUTE phase
to get a destination point as an output. The robot then goes
to that destination point by moving in the MOVE phase. The
activation of the robots is controlled by a scheduler. There are
mainly three types of schedulers considered in the literature. In
a synchronous scheduler, time is divided into global rounds. In
a fully synchronous (FSYNC) scheduler, each robot is activated
in all the rounds and executes LCM cycle simultaneously. In a
semi-synchronous (SSYNC) scheduler all robots may not get
activated in each round. But the robots that are activated in
the same round execute the LCM cycle simultaneously. Lastly
in the asynchronous (ASYNC) scheduler, there is no common
notion of time, a robot can be activated at any time. There is no
concept of global rounds. So there is no assumption regarding
synchronization.

The Gathering and Arbitrary pattern formation are two
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vastly studied problems by researchers in the field of swarm
robot algorithms. These are one of the fundamental tasks
which can be done by autonomous robots in different set-
tings. In the gathering problem, n number of robots initially
positioned arbitrarily meets at a point not fixed from earlier
within finite time. It is not always easy to meet at a point
with very weak robots in the distributed system. Similarly, the
Arbitrary pattern formation problem is such that robots have
to form a given pattern that is given as input to the robots
within a finite time. In literature, there are several works that
have considered either gathering or arbitrary pattern formation
problem separately. But none of those works consider robots
deployed in the same environment working on two different
tasks. The environment of robot swarm needs periodic main-
tenance for making the environment robust from faults and
some other factors. So if the same robot swarm deployed in
the environment can do the maintenance apart from doing the
specific task assigned to them, it would be more cost-effective.
From this motivation and practical interest, in [2] authors first
studied the problem where two teams of oblivious robots work
on two different tasks, namely gathering and circle formation
on a plane. Here the crucial part is that a robot knows to which
team it belongs, but it can not recognize another robot’s team.
The novelty of the problem would have gone away a bit if the
robots are luminous and gathering team robots put a color on
a light to indicate which team they belong to. But the main
motivation of this problem is to extend the work for more
than two different tasks and for assigning different colors for
different tasks would make the number of colors unbounded.
For this reason, it is convenient to solve the problem with the
least possible capabilities for the robot swarm. Also OBLOT
model is more self-stabilized and fault tolerant. For these
reasons, in our work, we also consider robots to be oblivious.
Now it is challenging to design a distributed algorithm by
which two different teams of oblivious robots can do two
different tasks simultaneously on a discrete domain because, in
any discrete graph, the movements of robots become restricted.
So avoiding collision becomes a great challenge.

In our work, we have provided a collision-less distributed
algorithm following which two teams of oblivious robots with
weak multiplication detection ability can do two different tasks
namely gathering and arbitrary pattern formation simultane-
ously on an infinite grid under the asynchronous scheduler.
Here we assume that the initial configuration is asymmetric.

II. EARLIER WORKS

Arbitrary pattern formation and gathering of robots are
two hugely studied problems in the distributed system. In
literature, there are many works on these two problems in
various settings. Arbitrary pattern formation on a plane was
first studied by Suzuki and Yamashita [13]. For the grid
network, the arbitrary pattern formation was first studied in
[3] in the OBLOT model with full visibility. But in this
paper, the algorithm is not move optimal. So in [9] authors
have shown on an infinite grid a move optimal APF algorithm
under OBLOT model and a time optimal APF algorithm

under LUMI model. Later in [4] authors studied the APF on
a regular tessellation graph. In an infinite grid, the arbitrary
pattern formation problem was studied in [11] with opaque
robots and in [12] with fat robots. Similarly, for gathering
there are many works in an infinite grid. In [7], authors
have shown that the gathering is possible on a grid without
multiplicity detection. There are many other works ( [1], [5],
[6], [8]) where authors have solved gathering on an infinite
rectangular grid with various assumptions. In [10] authors
solved the gathering of robots on an infinite triangular grid
in SSYNC scheduler under one axis agreement and with one-
hop visibility. But in all these works they only consider that
all robots perform one individual task. But in [2] authors first
showed that two specific but different tasks can be done by
robots simultaneously on a plane. They showed that gathering
and circle formation can be done by oblivious robots in a
plane simultaneously with two different teams of robots using
one-axis agreement.

So here we are interested to show that two different tasks
namely gathering and the arbitrary pattern formation of obliv-
ious robots can be done on an infinite grid simultaneously
under an asynchronous scheduler without any axis agreement.
This paper first time deals with this problem under a discrete
environment. In [4], authors considered multiplicity points in
the target pattern that needs to be formed. So their work is
also capable of forming an arbitrary pattern along with an
additional multiplicity point. But by following their algorithm
a robot on team gathering might end up forming a pattern
and also a robot on team arbitrary pattern formation might
end up on the multiplicity point, which is not the required
solution to our problem. The algorithm proposed in paper [9]
uses similar technique to select head and tail robots and also
the forming of the fixed pattern. But in [9] the robots have no
multiplicity detection capability and throughout the algorithm,
no multiplicity points will form. So from the existing previous
algorithms (as in [4], [9]), two different tasks are not trivially
solved by robots as a robot does not know in which team
another robot belongs.

III. MODEL AND PROBLEM STATEMENT

Robots: Robots are anonymous, identical, and oblivious,
i.e. they have no memory of their past rounds. They can not
communicate with each other. There are two teams between
the robots. One is TApf and the other team is Tg . A robot r
only knows that in which team it belongs to between this
two. But a robot can not identify to which team another
robot belongs. All robots are initially in distinct positions
on the grid. The robots can see the entire grid and all other
robots’ positions which means they have global visibility. This
implies the robots are transparent and hence the visibility of a
robot can not be obstructed by another robot. Robots have no
access to any common global coordinate system. They have
no common notion of chirality or direction. A robot has its
local view and it can calculate the positions of other robots
with respect to its local coordinate system with the origin at its
own position. There is no agreement on the grid about which

181
Authorized licensed use limited to: JADAVPUR UNIVERSITY. Downloaded on May 26,2023 at 09:37:35 UTC from IEEE Xplore.  Restrictions apply. 



line is x or y-axis and also about the positive or negative
direction of the axes. As the robots can see the entire grid,
they will set the axes of their local coordinate systems along
the grid lines. Also, robots have weak multiplicity detection
capability, which means a robot can detect a multiplicity point
but cannot count the number of robots present at a multiplicity
point.

Look-Compute-Move cycles: An active robot operates
according to the Look-Compute-Move cycle. In each cycle
a robot takes a snapshot of the positions of the other robots
according to its own local coordinate system (LOOK); based
on this snapshot, it executes a deterministic algorithm to
determine whether to stay put or to move to an adjacent
grid point (COMPUTE); and based on the algorithm the robot
either remain stationary or makes a move to an adjacent grid
point (MOVE). When the robots are oblivious they have no
memory of past configurations and previous actions. After
completing each LOOK-COMPUTE-MOVE cycle, the contents
in each robot’s local memory are deleted.

Scheduler: We assume that robots are controlled by
a fully asynchronous adversarial scheduler (ASYNC). The
robots are activated independently and each robot executes its
cycles independently. This implies the amount of time spent
in LOOK, COMPUTE, MOVE, and inactive states are finite
but unbounded, unpredictable, and not the same for different
robots. The robots have no common notion of time.

Movement: In discrete domains, the movements of robots
are assumed to be instantaneous. This implies that the robots
are always seen on grid points, not on edges. However, in
our work, we do not need this assumption. In the proposed
algorithm, we assume the movements are to be instantaneous
for simplicity. However, this algorithm also works without this.
The movement of the robots is restricted from one grid point
to one of its four neighboring grid points.

A. Problem Description

In this work, we define a problem on an infinite grid where
n oblivious, identical, autonomous robots are dispersed on the
vertices of the infinite grid. In [2] they solved two conflicting
tasks by robots on a plane where one team of robots gather
at a point and another team of robots form a circle on the
plane. But in this work robots are on an infinite grid and they
solve two different distributed problems. Here are two teams
of oblivious robots where one team is Tg and the other team is
TApf . The goal of the robots of Tg is to meet all the robots of
this team to a point on an infinite grid. Another team is TApf

where the goal of this team is to form a particular pattern that
is given as input. The next section provides the algorithm for
solving this problem.

IV. THE MAIN ALGORITHM

A. Global Coordinate Agreement

Here we have to first fix the global coordinate system and
then we aim to gather the Tg robots to the origin and form the
arbitrary pattern by TApf robots with respect to the coordinate
(0, 2). So let us consider an infinite grid G as a cartesian

Fig. 1. ABCD is the smallest enclosing rectangle of initial configuration.
H and T are head and tail of the configuration. A is the origin and the
target configuration will be embedded with respect to (0.2). A′B′C′D′ is
the smallest enclosing rectangle of target configuration

product P × P , where P is an infinite (from both sides) path
graph. The infinite grid G is embedded in the Cartesian Plane
R2. In this work, some robots will gather at a point and other
robots will form an arbitrary pattern on the grid. Here we
are assuming that the initial configuration is asymmetric. A
robot can form a local coordinate system aligning the axes
along the grid lines but the robots do not have an access to
any global coordinate system even. To form the target pattern
the robots need to reach an agreement on a global coordinate
system. In this subsection, we will provide the details of the
procedure that allows the robots to reach an agreement on a
global coordinate system.

For a given configuration (C) formed by the robots, let the
smallest enclosing rectangle, denoted by s.rect(C), be the
smallest grid-aligned rectangle that contains all the robots.
Suppose the s.rect of the initial configuration CI is a rectangle
R = ABCD of size m × n, such that m > n > 1. Let
|AB| = n. Then consider the binary string {pi} associated
with a corner A, λAB as follows. Scan the grid from A
along the side AB to B and sequentially all grid lines of
s.rect(CI) parallel to AB in the same direction. And pi = 0,
if the position is unoccupied and pi = 1 otherwise. Similarly
construct the other binary strings λBA, λCD and λDC . Since
the initial configuration is asymmetric we can find a unique
lexicographically largest string. If λAB is the lexicographically
largest string, then A is called the leading corner of R.

Next, suppose R is an m × m square, then consider the
eight binary strings λAB , λBA, λCD, λDC , λBC , λCB , λAD,
λDA. Again since the initial configuration is asymmetric, we
can find a unique lexicographically largest string among them.
Hence we can find a leading corner here as well.

Next, let CI be a line AB, we will have two strings λAB

and λBA. Since CI is asymmetric then λAB and λBA must be
distinct. If λAB is lexicographically larger than λBA, then we
choose A as the leading corner.

Now for either case, if λAB is the lexicographically largest
string then the leading corner A is considered as the origin,
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and the x− axis is taken along the AB line. If CI is not a line
then the y− axis is taken along the AD line. If CI is a line
then the y− coordinate of all the positions of robots is going
to be zero and in this case, the y− axis will be determined
later. For any given asymmetric configuration C if λAB is the
largest associated binary string to C then the robot causing the
first non-zero entry in λAB is called head let H and the robot
causing last non zero entry in λAB is called as tail let T .
We denote the ith robot of the λAB string as ri−1. A robot
other than the head and tail is called inner robot. Further
we denote C′ = C \ {tail} and C′′ = C \ {tail, head} and
C′′′ = C \ {head}.

Let Ctarget be the target configuration for the TApf robots
and s.rect(Ctarget) = Rtarget. Let Rtarget is a rectangle of
size M×N with M ≥ N . We can calculate the binary strings
associated with corners in the same manner as previously.
Ctarget is expressed in the coordinate system with respect to
the point (0, 2), where (0, 2) will be the leading corner. Let
the A′B′C ′D′ be the smallest rectangle enclosing the target
pattern with A′B′ ≤ B′C ′. Let λA′B′ be the largest (may not
be unique) among all other strings. Then the target pattern is
to be formed such that A is the origin and pattern embedded
with respect to the position (0, 2), A′B′ direction is along the
positive x axis and A′D′ direction is along the positive y axis.
If the target pattern has symmetry then we have to choose any
one among the larger string and fixed the coordinate system.
So as previously said headtarget will be the first one and
tailtarget will be the last one in the s.rect of Ctarget. Also,
we define Cfinal is the configuration when all Tg robots are
at same point and Ctarget configuration is formed. C′

final =
Cfinal\{tailtarget}, C′′

final = Cfinal\{headtarget, tailtarget},
C′′′
final = Cfinal \ {headtarget}. We denote the headtarget

position as t1 and tailtarget position as tk. Let Hi be the
horizontal line having the height i from the x-axis. Let for each
i there are p(i) target positions on Hi. We denote the target
positions of H0 as t1......tp(0)−1 from left to right. For H1 we
denote the target positions as tp(0) to tp(0)+p(1)−1 from right
to left. For H2 we denote the target positions as tp(0)+p(1) to
tp(0)+p(1)+p(2)−1 from right to left. Similarly, we can denote
all other target positions on Hi, i > 0 except tailtarget.

B. Brief Discussion of Algorithm

Let the initial configuration is CI , the final configuration is
Cfinal. Robots are operating on an infinite grid. There are two
teams of robots where one is Tg and another one is TApf (let
us assume that |Tg| > 2). Tg robots will gather at the same
point on the grid and the robots of TApf will form a pattern
on the grid. Note that the gathering point will not be a target
point of the target pattern. A robot only knows in which team
it belongs between Tg and TApf . A robot has no information
about to which team other robots belong. Robots first fix the
global coordinate system. The target will form with respect to
the point (0,2) and the gathering will occur at the origin. When
a robot awakes up it first calculates the head robot and tail
robot. In the first three stages, the head robot will move to the
origin and the tail robot will expand the smallest enclosing

TABLE I
IF ANY OF THE BOOLEAN VARIABLE Pi WHERE 0 ≤ i ≤ 14 ON THE LEFT
COLUMN IS TRUE THEN THE CORRESPONDING CONDITION ON THE RIGHT

COLUMN IS SATISFIED AND VICE VERSA.

P0 C = Cfinal

P1 C′ = C′
final

P2 All Tg robots are at a same point
P3 CApf = Ctarget

P4 The current configuration is asymmetric
P5 m = max {N,n}+ 2
P6 m = 2.max {M,V } where V is the length of the vertical

side of the smallest enclosing rectangle of C′

P7 The head in C is at the origin
P8 n ≥ max {N + 1, H + 1, k} where H is the length of the

horizontal side of the smallest enclosing rectangle of C′

P9 Line formation on x-axis without tail
P10 C′ has a non-trivial reflectional symmetry with respect to

a vertical line
P11 C′′′ = C′′′

final

P12 C′′ = C′′
final

P13 m ≥ max {N,n}+2, m ≥ 2.max {M,V } and m is odd
P14 There exist a multiplicity point

rectangle for maintaining the asymmetry of the configuration.
Then in the stage 4 all the inner robots now move to the x-
axis and make a line on the x-axis. Note that a line is called
compact line when there is no empty grid point between two
robots. So robots on the x-axis first make the line compact then
one by one inner robot from upward horizontal lines move
down to the x-axis. After this in stage 5 the robot which is
not on a line say r, will move to its closest endpoint of the
line if it ∈ Tg or it will move one step upward if it belongs
to TApf . In the next stage after a multiplicity point is formed
or calculating the position of the tail, robots on the x-axis
move to the fixed target positions which are either the origin
or the target positions. Robots will move from right to left with
respect to the position of the head sequentially. As all inner
robots are on the x-axis so the robot ∈ Tg can always find the
neighboring grid lines empty, so the robot can move to the
origin by choosing any path to the origin if all the robots are
on a line. If a robot can see the tail robot then it will choose
the neighboring line of the x-axis in the direction of the tail
for its movement. In this way, one by one all inner robots move
to their fixed target positions. Next if tail sees that all inner
robots move to their target positions it will move to their fixed
position. In the last stage if the head robot is in the gathering
team then it will not move but if it is in the APF team then
when without its position all the pattern formation is done it
will move to its position. Note that within the algorithm no two
robots collide without the gathering point and the coordinate
system remains unchanged. Within finite time all Tg robots
move to the same point and the TApf robots form the fixed
pattern that is given as input.

C. Description of the Stages

The main difficulty of this problem is a robot does not
know which team another robot belongs to. The robot only
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Fig. 2. Case-1: C′ has a vertical symmetry and tail will move rightwards

Fig. 3. Case-2: C′ has a vertical symmetry and tail will move leftwards

knows about its own team. Here we will show that there
will not arise any symmetry and no collision will occur. The
global coordinate system will also not change. The algorithm
is divided into eight stages. In this situation, the global
coordinate will fix as we mention in sec IV-A

a) Stage-1: Input: {P4 ∧ ¬P14 ∧ ¬(P5 ∧ P6)} is true.
The tail robot will move upwards and all other robots will
remain static.
Aim: The aim is to make {P5 ∧ P6} = true. After finite number
of moves by tail robot stage-1 completes with {P4 ∧ ¬P14 ∧
P5 ∧ P6} is true.

b) Stage-2: Input: {P4 ∧¬P14 ∧P5 ∧P6 ∧¬P7} is true.
The head robot will move to origin. So head robot will move
towards left if it is not initially at the origin. In this move
head robot will remain head.
Aim: After finite number of moves by the head robot stage-2
completes when {P4 ∧ ¬P14 ∧ P5 ∧ P6 ∧ P7} is true.

c) Stage-3: Input: {P4 ∧ ¬P14 ∧ P5 ∧ P6 ∧ P7 ∧ ¬P8}
is true.
The tail robot will move rightwards.
Aim: The main aim of this stage is to make P8 true. After
movement of robots {P4 ∧¬P14 ∧P5 ∧P6 ∧P7 ∧P8} is true.
In this stage the robots will check if P10 is true or false. If
P10 is true then there may arise two cases:

Fig. 4. Any ri ∈ Tg moves to A and ri ∈ TApf moves to fixed target
positions one by one.

Case-1: If tail is in the rightwards of the vertical
symmetric line they it will move and make P8 true.

Case-2: If the tail robot is in the left direction of the
vertical symmetric line then it will not move rightwards. Tail
will then move in leftwards upto one more step than D (fig 3).
In this case the co-ordinate system will be changed.

d) Stage-4: Input:{P4∧¬P14∧P5∧P6∧P7∧P8∧¬P9}
is true.
The inner robots will move to the x-axis and form a line.
Other than the tail robot, all other inner robots form a line
on the x-axis. In stage four, the head is in origin, and all the
robots on the x-axis first make the line compact, i.e. there
is no empty grid point between two robots. After the x-axis
becomes compact, when a robot ri is on Hi and there are no
robots in between Hi and the x-axis and the right part of ri
is empty in its horizontal line, then the robot moves to the x-
axis. This procedure is done one by one by robots. In between
this movement, no collision will occur. So all the inner robots
other than the tail form a line on the x-axis.
Aim: When all the inner robots move to x-axis then {P4 ∧
¬P14 ∧ P5 ∧ P6 ∧ P7 ∧ P8 ∧ P9} is true.

e) Stage-5: Input: P4 ∧ ¬P14 ∧ ¬P13 ∧ P7 ∧ P9 is true.
One robot which is not on a compact line will move to its
closest end point of that line following the shortest path if
it ∈ Tg . As without one robot all other robots are on line so
that one robot will move downwards. Then P14 is true. Or
when (P4∧¬P14∧P7∧P9)∧ (P5∧P6∧P8) is true then that
one robot will move upward from its position if it ∈ TApf .
By this move P13 will be true.

Aim: P4 ∧ ¬P14 ∧ P7 ∧ P9 ∧ (P13 ∨ P14) is true..
After this stage if P14 is true then all robots will fix the
multiplicity point as origin, the compact line is as x axis and
the other perpendicular axis as y axis.

f) Stage-6: Input: P13 ∨ P14 is true.
When the tail robot will see that P13 is true then it will not
move. An inner robot when sees that it is the rightmost robot
on x-axis and P13 is true and there exists robots at the positions
tk−1, tk−2.....tk−i+1 where 1 ≤ i ≤ k (let tk be the position
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Fig. 5. A multiplicity point at A and some of the TApf robots form the
pattern

of tail) then that inner robot will move upwards to tk−i if
it ∈ TApf . If the robot ∈ Tg then it will move to the origin.
Note that in this case robot can fix the global coordinate so
it will move to the origin by choosing the first horizontal line
in the positive direction of the y-axis. When a rightmost robot
of team APF on x-axis sees that P13 is true and no robot on
target positions then it will move to tk−1. Note that when a
left most robot without head on x axis of APF team sees that
only tailtarget or tailtarget and headtarget are not occupied
by robots then the robot will move to tailtarget. Again if P14

is true then the rightmost robot on x-axis sees that there exist
robots on tk, tk−1.....tk−i+1 where 1 ≤ i ≤ k then that inner
robot moves upward to tk−i if it ∈ TApf . If it ∈ Tg then move
to multiplicity point. Here when a robot can see all robots
on a line then it will fix that line as the x-axis and anyone
perpendicular line as the y-axis and the multiplicity point as
the origin. So the robot ∈ Tg moves to the origin by choosing
the first horizontal line in the positive direction of y-axis. In
this way, the inner robots move to their target positions one
by one.
Aim: After this stage P14 ∧ P12 is true.
After this stage, the multiplicity will be the origin and as the
target pattern will be formed with respect to (0, 2) so either
there will be a robot at tailtarget or the tail robot will be at
a position maintaining P13 true. So we can choose the larger
side as the y-axis and the other one as the x-axis.

g) Stage-7: Input:In this stage P14 ∧P12 ∧¬P11 is true.
If tail ∈ TApf then move to the position of the tail target. But
if tail ∈ Tg then the tail will move to the origin. If tail ∈ Tg
then the tail will move downwards up to the x-axis and then
move towards the multiplicity point (By P13 condition we can
say that there will be no robot in this path of tail’s movement).
Aim: P11 is true.

h) Stage-8: Input: P11 ∧ P14 is true.
If head robot is in gather team then it will not move. So then
P0 is true. But if it belongs to TApf then it moves to upward
and then to the position of headtarget.
Aim: After the movement of head then P0 is true.

Fig. 6. Flow chart of the algorithm

So after completing these stages P2 and P3 conditions
will be true. No collision will occur during the movement of
robots throughout the algorithm. So the gathering and arbitrary
pattern formation will be done by the robots simultaneously
on an infinite grid by oblivious robots.
The proposed algorithm is depicted in the flowchart in fig 6.
Starting from any configuration where ¬P0 from the diagram
fig 6 each directed path starting from the node where ¬P0

ends at the node where P0 is true. Hence we can conclude the
theorem.

Theorem 4.1: Gathering and Arbitrary pattern formation
are solvable in ASYNC by TApf and Tg robots from any
asymmetric initial configuration.

V. CONCLUSION

In this work, we claim that by our algorithm two different
teams of robots can simultaneously gather and form an arbi-
trary pattern on an infinite grid. A robot only knows that in
which team it belongs to between gathering and APF. To our
knowledge in a grid network, this is the first work where two
different tasks are performed simultaneously by two different
teams of robots. Here we assume the grid is infinite and the
visibility is full. So for further work, we can extend this work
by assuming limited visibility and also when the grid is finite.
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